试读已结束,还剩1页未读,您可下载完整版后进行离线阅读
《2012四川省高考数学试题及答案(理数)》是由用户上传到老师板报网,本为文库资料,大小为1.37 MB,总共有11页,格式为doc。授权方式为VIP用户下载,成为老师板报网VIP用户马上下载此课件。文件完整,下载后可编辑修改。
- 文库资料
- 11页
- 1.37 MB
- VIP模板
- doc
- 数字产品不支持退货
DCAEB2012年普通高等学校招生全国统一考试(四川卷)数学(理工类)参考公式:如果事件互斥,那么球的表面积公式()()()PABPAPB+=+24SRp=如果事件相互独立,那么其中R表示球的半径()()()PABPAPB×=球的体积公式如果事件A在一次试验中发生的概率是p,那么343VRp=在n次独立重复试验中事件A恰好发生k次的概率其中R表示球的半径()(1)(0,1,2,,)kknknnPkCppkn-=-=…第一部分(选择题共60分)注意事项:1、选择题必须使用2B铅笔将答案标号涂在机读卡上对应题目标号的位置上。2、本部分共12小题,每小题5分,共60分。一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。1、7(1)x的展开式中2x的系数是()A、42B、35C、28D、212、复数2(1)2ii()A、1B、1C、iD、i3、函数29,3()3ln(2),3xxfxxxx在3x处的极限是()A、不存在B、等于6C、等于3D、等于04、如图,正方形ABCD的边长为1,延长BA至E,使1AE,连接EC、ED则sinCED()A、31010B、1010C、510D、5155、函数1(0,1)xyaaaa的图象可能是()6、下列命题正确的是()A、若两条直线和同一个平面所成的角相等,则这两条直线平行B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D、若两个平面都垂直于第三个平面,则这两个平面平行7、设a、b都是非零向量,下列四个条件中,使||||abab成立的充分条件是()A、abB、//abC、2abD、//ab且||||ab8、已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点0(2,)My。若点M到该抛物线焦点的距离为3,则||OM()A、22B、23C、4D、259、某公司生产甲、乙两种桶装产品。已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克。每桶甲产品的利润是300元,每桶乙产品的利润是400元。公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克。通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是()A、1800元B、2400元C、2800元D、3100元10、如图,半径为R的半球O的底面圆O在平面内,过点O作平面的垂线交半球面于点A,过圆O的直径CD作平面成45角的平面与半球面相交,所得交线上到平面的距离最大的点为B,该交线上的一点P满足60BOP,则A、P两点间的球面距离为()A、2arccos4RB、4RC、3arccos3RD、3R11、方程22aybxc中的,,{3,2,0,1,2,3}abc,且,,abc互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有()A、60条B、62条C、71条D、80条αCAODBP12、设函数()2cosfxxx,{}na是公差为8的等差数列,125()()()5fafafa,则2313[()]faaa()A、0B、2116C、218D、21316第二部分(非选择题共90分)注意事项:(1)必须使用0.5毫米黑色签字笔在答题卡上题目所指示的答题区域内作答,作图题可先用铅笔绘出,确认后再用0.5毫米黑色签字笔描清楚。答在试题卷上无效。(2)本部分共10个小题,共90分。二、填空题(本大题共4个小题,每小题4分,共16分。把答案填在答题纸的相应位置上。)13、设全集{,,,}Uabcd,集合{,}Aab,{,,}Bbcd,则()()UUABðð___________。14、如图,在正方体1111ABCDABCD中,M、N分别是CD、1CC的中点,则异面直线1AM与DN所成角的大小是____________。15、椭圆22143xy的左焦点为F,直线xm与椭圆相交于点A、B,当FAB的周长最大时,FAB的面积是____________。16、记[]x为不超过实数x的最大整数,例如,[2]2,[1.5]1,[0.3]1。设a为正整数,数列{}nx满足1xa,1[][]()2nnnaxxxnN,现有下列命题:①当5a时,数列{}nx的前3项依次为5,3,2;②对数列{}nx都存在正整数k,当nk时总有nkxx;③当1n时,1nxa;④对某个正整数k,若1kkxx,则[]nxa。其中的真命题有____________。(写出所有真命题的编号)三、解答题(本大题共6个小题,共74分。解答应写出必要的文字说明,证明过程或演算步骤。)17、(本小题满分12分)某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和B在任意时刻发生故障的概率分别为110和p。(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为4950,求p的值;(Ⅱ)设系统A在3次相互独立的检测中不发生故障的次数为随机变量,求的概率分布列及数学期望E。18、(本小题满分12分)函数2()6cos3cos3(0)2xfxx在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且ABC为正三角形。(Ⅰ)求的值及函数()fx的值域;(Ⅱ)若083()5fx,且0102(,)33x,求0(1)fx的值。NMB1A1C1D1BDCA19、(本小题满分12分)如图,在三棱锥PABC中,90APB,60PAB,ABBCCA,平面PAB平面ABC。(Ⅰ)求直线PC与平面ABC所成角的大小;(Ⅱ)求二面角BAPC的大小。20、(本小题满分12分)已知数列{}na的前n项和为nS,且22nnaaSS对一切正整数n都成立。(Ⅰ)求1a,2a的值;(Ⅱ)设10a,数列110{lg}naa的前n项和为nT,当n为何值时,nT最大?并求出nT的最大值。21、(本小题满分12分)如图,动点M到两定点(1,0)A、(2,0)B构成MAB,且2MBAMAB,设动点M的轨迹为C。(Ⅰ)求轨迹C的方程;(Ⅱ)设直线2yxm与y轴交于点P,与轨迹C相交于点QR、,且||||PQPR,求||||PRPQ的取值范围。22、(本小题满分14分)已知a为正实数,n为自然数,抛物线22nayx与x轴正半轴相交于点A,设()fn为该抛物线在点A处的切线在y轴上的截距。(Ⅰ)用a和n表示()fn;(Ⅱ)求对所有n都有33()1()11fnnfnn成立的a的最小值;(Ⅲ)当01a时,比较11()(2)nkfkfk与27(1)()4(0)(1)ffnff的大小,并说明理由。ABCPyxBAOM