2011年海南省高考(文科)数学试卷(新课标)+参考答案

出处:老师板报网 时间:2023-02-15

2011年海南省高考(文科)数学试卷(新课标)+参考答案1

2011年海南省高考(文科)数学试卷(新课标)+参考答案2

2011年海南省高考(文科)数学试卷(新课标)+参考答案3

2011年海南省高考(文科)数学试卷(新课标)+参考答案4

2011年海南省高考(文科)数学试卷(新课标)+参考答案5

2011年海南省高考(文科)数学试卷(新课标)+参考答案6

2011年海南省高考(文科)数学试卷(新课标)+参考答案7

2011年海南省高考(文科)数学试卷(新课标)+参考答案8

2011年海南省高考(文科)数学试卷(新课标)+参考答案9

2011年海南省高考(文科)数学试卷(新课标)+参考答案10

试读已结束,还剩2页未读,您可下载完整版后进行离线阅读

《2011年海南省高考(文科)数学试卷(新课标)+参考答案》是由用户上传到老师板报网,本为文库资料,大小为633.5 KB,总共有12页,格式为doc。授权方式为VIP用户下载,成为老师板报网VIP用户马上下载此课件。文件完整,下载后可编辑修改。

  • 文库资料
  • 12页
  • 633.5 KB
  • VIP模板
  • doc
  • 数字产品不支持退货
单价:4.99 会员免费
2011年普通高等学校招生全国统一考试(新课标)文科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={0,1,2,3,4},N={1,3,5},P=M,则P的子集共有A.2个B.4个C.6个D.8个2.复数A.B.C.D.3.下列函数中,既是偶函数又在单调递增的函数是A.B.C.D.4.椭圆的离心率为A.B.C.D.5.执行右面的程序框图,如果输入的N是6,那么输出的p是A.120B.720C.1440D.50406.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A.B.C.D.7.已知角的顶点与原点重合,始边与x轴的正半轴重合,终边在直线上,则=A.B.C.D.8.在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为A.B.C.D.9.已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,,P为C的准线上一点,则的面积为A.18B.24C.36D.4810.在下列区间中,函数的零点所在的区间为A.B.C.D.11.设函数,则A.在单调递增,其图象关于直线对称B.在单调递增,其图象关于直线对称C.在单调递减,其图象关于直线对称D.在单调递减,其图象关于直线对称12.已知函数的周期为2,当时,那么函数的图象与函数的图象的交点共有A.10个B.9个C.8个D.1个第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.已知a与b为两个不共线的单位向量,k为实数,若向量a+b与向量ka-b垂直,则k=_____________.14.若变量x,y满足约束条件,则的最小值是_________.15.中,,则的面积为_________.16.已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为______________.三、解答题:解答应写文字说明,证明过程或演算步骤.17.(本小题满分12分)已知等比数列中,,公比.(I)为的前n项和,证明:(II)设,求数列的通项公式.18.(本小题满分12分)如图,四棱锥中,底面ABCD为平行四边形,,,底面ABCD.(I)证明:;(II)设PD=AD=1,求棱锥D-PBC的高.19.(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:A配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]频数82042228B配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]频数412423210(I)分别估计用A配方,B配方生产的产品的优质品率;(II)已知用B配方生产的一种产品利润y(单位:元)与其质量指标值t的关系式为估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润.20.(本小题满分12分)在平面直角坐标系xOy中,曲线与坐标轴的交点都在圆C上.(I)求圆C的方程;(II)若圆C与直线交于A,B两点,且求a的值.21.(本小题满分12分)已知函数,曲线在点处的切线方程为.(I)求a,b的值;(II)证明:当x>0,且时,.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分.做答是用2B铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22.(本小题满分10分)选修4-1:几何证明选讲如图,D,E分别为的边AB,AC上的点,且不与的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程的两个根.(I)证明:C,B,D,E四点共圆;(II)若,且求C,B,D,E所在圆的半径.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy中,曲线的参数方程为为参数),M为上的动点,P点满足,点P的轨迹为曲线.(I)求的方程;(II)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为A,与的异于极点的交点为B,求|AB|.24.(本小题满分10分)选修4-5:不等式选讲设函数,其中.(I)当a=1时,求不等式的解集.(II)若不等式的解集为{x|,求a的值.参考答案一、选择题(1)B(2)C(3)B(4)D(5)B(6)A(7)B(8)D(9)C(10)C(11)D(12)A二、填空题(13)1(14)-6(15)(16)1.解析:本题考查交集和子集概念,属于容易题。显然P=,子集数为22=4故选B2.解析:本题考查复数的运算,属容易题。解法一:直接法512ii,故选C解法二:验证法验证每个选项与1-2i的积,正好等于5i的便是答案。3.解析:本题考查函数的奇偶性和单调性,属于简单题可以直接判断:A是奇函数,B是偶函数,又是0,的增函数,故选B。4.解析;本题考查椭圆离心率的概念,属于容易题,直接求e=,故选D。也可以用公式故选D。5.解析:本题考查程序框图,属于容易题。可设,则输出720.故选B6.解析:本题考查古典概型,属于容易题。设三个兴趣小组分别为A,B,C.他们参加情况共一下9种情况,其中参加同一小组情况共3中,故概率为故选A。7.解析:本题考查三角公式,属于容易题。易知tan=2,cos=.由cos2=2-1=35故选B8.解析:本题考查三视图的知识,同时考察空间想象能力。属于难题。由正视图和俯视图可以判断此几何体前部分是一个的三棱锥,后面是一个圆锥,由此可选D9.解析:本题考查抛物线的方程,属于中等题。易知2P=12,即AB=12,三角形的高是P=6,所以面积为36,故选C。10.解析:本题考查零点存在定理,属于中等题。只需验证端点值,凡端点值异号就是答案。故选C。11.解析:本题考查三角函数的性质。属于中等题。解法一:f(x)=sin(2x+)=cos2x.所以f(x)在(0,2π)单调递减,其图像关于直线x=2π对称。故选D。解法二:直接验证由选项知(0,2π)不是递增就是递减,而端点值又有意义,故只需验证端点值,知递减,显然x=4π不会是对称轴故选D。12.解析:本题考查函数的图象和性质,属于难题。本题可用图像法解。易知共10个交点13.解析:本题考查向量的基本运算和性质,属于容易题。解法一:直接法(a+b)(ka-b)=0展开易得k=1.解法二:凭经验k=1时a+b,a-b数量积为0,易知k=1.14.解析:本题考查线性规划的基本知识,属于容易题。只需画出线性区域即可。易得z=x+2y的最小值为-6。15.解析:本题考查余弦定理和面积公式,属于容易题。有余弦定理得所以BC=3,有面积公式得S=16.解析:本题考查球内接圆锥问题,属于较难的题目。由圆锥底面面积是这个球面面积的163得所以,则小圆锥的高为大圆锥的高为,所以比值为三、解答题(17)解:(Ⅰ)因为所以(Ⅱ)所以的通项公式为(18)解:(Ⅰ)因为,由余弦定理得从而BD2+AD2=AB2,故BDAD又PD底面ABCD,可得BDPD所以BD平面PAD.故PABD(Ⅱ)如图,作DEPB,垂足为E。已知PD底面ABCD,则PDBC。由(Ⅰ)知BDAD,又BC//AD,所以BCBD。故BC平面PBD,BCDE。则DE平面PBC。由题设知,PD=1,则BD=,PB=2,根据BE·PB=PD·BD,得DE=,即棱锥D—PBC的高为(19)解(Ⅰ)由试验结果知,用A配方生产的产品中优质的频率为,所以用A配方生产的产品的优质品率的估计值为0.3。由试验结果知,用B配方生产的产品中优质品的频率为,所以用B配方生产的产品的优质品率的估计值为0.42(Ⅱ)由条件知用B配方生产的一件产品的利润大于0当且仅当其质量指标值t≥94,由试验结果知,质量指标值t≥94的频率为0.96,所以用B配方生产的一件产品的利润大于0的概率估计值为0.96.用B配方生产的产品平均一件的利润为(元)(20)解:(Ⅰ)曲线与y轴的交点为(0,1),与x轴的交点为(故可设C的圆心为(3,t),则有解得t=1.则圆C的半径为所以圆C的方程为(Ⅱ)设A(),B(),其坐标满足方程组:消去y,得到方程由已知可得,判别式因此,从而①由于OAOB⊥,可得又所以②由①,②得,满足故(21)解:(Ⅰ)由于直线的斜率为,且过点,故即解得,。(Ⅱ)由(Ⅰ)知,所以考虑函数,则所以当时,故当时,当时,从而当(22)解:(I)连接DE,根据题意在△ADE和△ACB中,AD×AB=mn=AE×AC,即.又∠DAE=CAB∠,从而△ADEACB∽△因此∠ADE=ACB∠所以C,B,D,E四点共圆。(Ⅱ)m=4,n=6时,方程x2-14x+mn=0的两根为x1=2,x2=12.故AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.因为C,B,D,E四点共圆,所以C,B,D,E四点所在圆的圆心为H,半径为DH.由于∠A=900,故GHAB∥,HFAC.HF=AG=5∥,DF=(12-2)=5.故C,B,D,E四点所在圆的半径为5(23)解:(I)设P(x,y),则由条件知M().由于M点在C1上,所以即从而的参数方程为(为参数)(Ⅱ)曲线的极坐标方程为,曲线的极坐标方程为。射线与的交点的极径为,射线与的交点的极径为。所以.(24)解:(Ⅰ)当时,可化为。由此可得或。故不等式的解集为或。()Ⅱ由得此不等式化为不等式组或即因为,所以不等式组的解集为,由题设可得=,故.
返回首页
X