2014年全国统一高考数学试卷(文科)(大纲版)+参考答案解析

出处:老师板报网 时间:2023-02-09

2014年全国统一高考数学试卷(文科)(大纲版)+参考答案解析1

2014年全国统一高考数学试卷(文科)(大纲版)+参考答案解析2

2014年全国统一高考数学试卷(文科)(大纲版)+参考答案解析3

2014年全国统一高考数学试卷(文科)(大纲版)+参考答案解析4

2014年全国统一高考数学试卷(文科)(大纲版)+参考答案解析5

2014年全国统一高考数学试卷(文科)(大纲版)+参考答案解析6

2014年全国统一高考数学试卷(文科)(大纲版)+参考答案解析7

2014年全国统一高考数学试卷(文科)(大纲版)+参考答案解析8

2014年全国统一高考数学试卷(文科)(大纲版)+参考答案解析9

2014年全国统一高考数学试卷(文科)(大纲版)+参考答案解析10

试读已结束,还剩12页未读,您可下载完整版后进行离线阅读

《2014年全国统一高考数学试卷(文科)(大纲版)+参考答案解析》是由用户上传到老师板报网,本为文库资料,大小为272.5 KB,总共有22页,格式为doc。授权方式为VIP用户下载,成为老师板报网VIP用户马上下载此课件。文件完整,下载后可编辑修改。

  • 文库资料
  • 22页
  • 272.5 KB
  • VIP模板
  • doc
  • 数字产品不支持退货
单价:4.99 会员免费
2014年全国统一高考数学试卷(文科)(大纲版)一、选择题(本大题共12小题,每小题5分)1.(5分)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为(  )A.2B.3C.5D.72.(5分)已知角α的终边经过点(﹣4,3),则cosα=(  )A.B.C.﹣D.﹣3.(5分)不等式组的解集为(  )A.{x|2﹣<x<﹣1}B.{x|1﹣<x<0}C.{x|0<x<1}D.{x|x>1}4.(5分)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为(  )A.B.C.D.5.(5分)函数y=ln(+1)(x>﹣1)的反函数是(  )A.y=(1e﹣x)3(x>﹣1)B.y=(ex1﹣)3(x>﹣1)C.y=(1e﹣x)3(x∈R)D.y=(ex1﹣)3(x∈R)6.(5分)已知,为单位向量,其夹角为60°,则(2﹣)•=(  )A.﹣1B.0C.1D.27.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有(  )A.60种B.70种C.75种D.150种8.(5分)设等比数列{an}的前n项和为Sn.若S2=3,S4=15,则S6=(  )A.31B.32C.63D.649.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为(  )A.+=1B.+y2=1C.+=1D.+=110.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为(  )A.B.16πC.9πD.11.(5分)双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于(  )A.2B.2C.4D.412.(5分)奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=(  )A.﹣2B.﹣1C.0D.1 二、填空题(本大题共4小题,每小题5分)13.(5分)(x2﹣)6的展开式中x3的系数是  .(用数字作答)14.(5分)函数y=cos2x+2sinx的最大值是  .15.(5分)设x,y满足约束条件,则z=x+4y的最大值为  .16.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于  . 三、解答题17.(10分)数列{an}满足a1=1,a2=2,an+2=2an+1a﹣n+2.(Ⅰ)设bn=an+1a﹣n,证明{bn}是等差数列;(Ⅱ)求{an}的通项公式.18.(12分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.19.(12分)如图,三棱柱ABCA﹣1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1ABC﹣﹣的大小.20.(12分)设每个工作日甲,乙,丙,丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)实验室计划购买k台设备供甲,乙,丙,丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.21.(12分)函数f(x)=ax3+3x2+3x(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)在区间(1,2)是增函数,求a的取值范围.22.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程. 2014年全国统一高考数学试卷(文科)(大纲版)参考答案与试题解析 一、选择题(本大题共12小题,每小题5分)1.(5分)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为(  )A.2B.3C.5D.7【考点】1A:集合中元素个数的最值;1E:交集及其运算.菁优网版权所有【专题】5J:集合.【分析】根据M与N,找文集合的交集,找出交集中的元素即可.【解答】解:∵M={1,2,4,6,8},N={1,2,3,5,6,7},∴M∩N={1,2,6},即M∩N中元素的个数为3.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键. 2.(5分)已知角α的终边经过点(﹣4,3),则cosα=(  )A.B.C.﹣D.﹣【考点】G9:任意角的三角函数的定义.菁优网版权所有【专题】56:三角函数的求值.【分析】由条件直接利用任意角的三角函数的定义求得cosα的值.【解答】解:∵角α的终边经过点(﹣4,3),∴x=4﹣,y=3,r==5.∴cosα===﹣,故选:D.【点评】本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题. 3.(5分)不等式组的解集为(  )A.{x|2﹣<x<﹣1}B.{x|1﹣<x<0}C.{x|0<x<1}D.{x|x>1}【考点】7E:其他不等式的解法.菁优网版权所有【专题】59:不等式的解法及应用.【分析】解一元二次不等式、绝对值不等式,分别求出不等式组中每个不等式的解集,再取交集,即得所求.【解答】解:由不等式组可得,解得0<x<1,故选:C.【点评】本题主要考查一元二次不等式、绝对值不等式的解法,属于基础题. 4.(5分)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为(  )A.B.C.D.【考点】LM:异面直线及其所成的角.菁优网版权所有【专题】5G:空间角.【分析】由E为AB的中点,可取AD中点F,连接EF,则∠CEF为异面直线CE与BD所成角,设出正四面体的棱长,求出△CEF的三边长,然后利用余弦定理求解异面直线CE与BD所成角的余弦值.【解答】解:如图,取AD中点F,连接EF,CF,∵E为AB的中点,∴EF∥DB,则∠CEF为异面直线BD与CE所成的角,∵ABCD为正四面体,E,F分别为AB,AD的中点,∴CE=CF.设正四面体的棱长为2a,则EF=a,CE=CF=.在△CEF中,由余弦定理得:=.故选:B.【点评】本题考查异面直线及其所成的角,关键是找角,考查了余弦定理的应用是中档题. 5.(5分)函数y=ln(+1)(x>﹣1)的反函数是(  )A.y=(1e﹣x)3(x>﹣1)B.y=(ex1﹣)3(x>﹣1)C.y=(1e﹣x)3(x∈R)D.y=(ex1﹣)3(x∈R)【考点】4R:反函数.菁优网版权所有【专题】51:函数的性质及应用.【分析】由已知式子解出x,然后互换x、y的位置即可得到反函数.【解答】解:∵y=ln(+1),∴+1=ey,即=ey1﹣,∴x=(ey1﹣)3,∴所求反函数为y=(ex1﹣)3,故选:D.【点评】本题考查反函数解析式的求解,属基础题. 6.(5分)已知,为单位向量,其夹角为60°,则(2﹣)•=(  )A.﹣1B.0C.1D.2【考点】9O:平面向量数量积的性质及其运算.菁优网版权所有【专题】5A:平面向量及应用.【分析】由条件利用两个向量的数量积的定义,求得、的值,可得(2﹣)•的值.【解答】解:由题意可得,=1×1×cos60°=,=1,∴(2﹣)•=2﹣=0,故选:B.【点评】本题主要考查两个向量的数量积的定义,属于基础题. 7.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有(  )A.60种B.70种C.75种D.150种【考点】D9:排列、组合及简单计数问题.菁优网版权所有【专题】5O:排列组合.【分析】根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,先从6名男医生中选2人,有C62=15种选法,再从5名女医生中选出1人,有C51=5种选法,则不同的选法共有15×5=75种;故选:C.【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同. 8.(5分)设等比数列{an}的前n项和为Sn.若S2=3,S4=15,则S6=(  )A.31B.32C.63D.64【考点】89:等比数列的前n项和.菁优网版权所有【专题】54:等差数列与等比数列.【分析】由等比数列的性质可得S2,S4S﹣2,S6S﹣4成等比数列,代入数据计算可得.【解答】解:S2=a1+a2,S4S﹣2=a3+a4=(a1+a2)q2,S6S﹣4=a5+a6=(a1+a2)q4,所以S2,S4S﹣2,S6S﹣4成等比数列,即3,12,S615﹣成等比数列,可得122=3(S615﹣),解得S6=63故选:C.【点评】本题考查等比数列的性质,得出S2,S4S﹣2,S6S﹣4成等比数列是解决问题的关键,属基础题. 9.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为(  )A.+=1B.+y2=1C.+=1D.+=1【考点】K4:椭圆的性质.菁优网版权所有【专题】5D:圆锥曲线的定义、性质与方程.【分析】利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.【解答】解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1.故选:A.【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题. 10.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为(  )A.B.16πC.9πD.【考点】LG:球的体积和表面积;LR:球内接多面体.菁优网版权所有【专题】11:计算题;5F:空间位置关系与距离.【分析】正四棱锥PABCD﹣的外接球的球心在它的高PO1上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积.【解答】解:设球的半径为R,则∵棱锥的高为4,底面边长为2,∴R2=(4R﹣)2+()2,∴R=,∴球的表面积为4π•()2=.故选:A.【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题 11.(5分)双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于(  )A.2B.2C.4D.4【考点】KC:双曲线的性质.菁优网版权所有【专题】5D:圆锥曲线的定义、性质与方程.【分析】根据双曲线的离心率以及焦点到直线的距离公式,建立方程组即可得到结论.【解答】解:∵:﹣=1(a>0,b>0)的离心率为2,∴e=,双曲线的渐近线方程为y=,不妨取y=,即bxay=0﹣,则c=2a,b=,∵焦点F(c,0)到渐近线bxay=0﹣的距离为,∴d=,即,解得c=2,则焦距为2c=4,故选:C.【点评】本题主要考查是双曲线的基本运算,利用双曲线的离心率以及焦点到直线的距离公式,建立方程组是解决本题的关键,比较基础. 12.(5分)奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=(  )A.﹣2B.﹣1C.0D.1【考点】3K:函数奇偶性的性质与判断.菁优网版权所有【专题】51:函数的性质及应用.【分析】根据函数的奇偶性的性质,得到f(x+8)=f(x),即可得到结论.【解答】解:∵f(x+2)为偶函数,f(x)是奇函数,∴设g(x)=f(x+2),则g(﹣x)=g(x),即f(﹣x+2)=f(x+2),∵f(x)是奇函数,∴f(﹣x+2)=f(x+2)=f﹣(x2﹣),即f(x+4)=f﹣(x),f(x+8)=f(x+4+4)=f﹣(x+4)=f(x),则f(8)=f(0)=0,f(9)=f(1)=1,∴f(8)+f(9)=0+1=1,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键. 二、填空题(本大题共4小题,每小题5分)13.(5分)(x2﹣)6的展开式中x3的系数是 ﹣160 .(用数字作答)【考点】DA:二项式定理.菁优网版权所有【专题】11:计算题.【分析】根据题意,由二项式定理可得(x2﹣)6的展开式的通项,令x的系数为3,可得r=3,将r=3代入通项,计算可得T4=160x﹣3,即可得答案.【解答】解:根据题意,(x2﹣)6的展开式的通项为Tr+1=C6rx6r﹣(﹣2)r=(﹣1)r•2r•C6rx6r﹣,令6r=3﹣可得r=3,此时T4=(﹣1)3•23•C63x3=160x﹣3,即x3的系数是﹣160;故答案为﹣160.【点评】本题考查二项式定理的应用,关键要得到(x2﹣)6的展开式的通项. 14.(5分)函数y=cos2x+2sinx的最大值是  .【考点】HW:三角函数的最值.菁优网版权所有【专题】11:计算题.【分析】利用二倍角公式对函数化简可得y=cos2x+2sinx=12sin﹣2x+2sinx=,结合﹣1≤sinx≤1及二次函数的性质可求函数有最大值【解答】解:∵y=cos2x+2sinx=12sin﹣2x+2sinx=又∵﹣1≤sinx≤1当sinx=时,函数有最大值故答案为:【点评】本题主要考查了利用二倍角度公式对三角函数进行化简,二次函数在闭区间上的最值的求解,解题中要注意﹣1≤sinx≤1的条件. 15.(5分)设x,y满足约束条件,则z=x+4y的最大值为 5 .【考点】7C:简单线性规划.菁优网版权所有【专题】31:数形结合.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得C(1,1).化目标函数z=x+4y为直线方程的斜截式,得.由图可知,当直线过C点时,直线在y轴上的截距最大,z最大.此时zmax=1+4×1=5.故答案为:5.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题 16.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于  .【考点】IV:两直线的夹角与到角问题.菁优网版权所有【专题】5B:直线与圆.【分析】设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,由直角三角形中的边角关系求得sinθ=的值,可得cosθ、tanθ的值,再根据tan2θ=,计算求得结果.【解答】解:设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,且点A与圆心O之间的距离为OA==,圆的半径为r=,∴sinθ==,∴cosθ=,tanθ==,∴tan2θ===,故答案为:.【点评】本题主要考查直线和圆相切的性质,直角三角形中的变角关系,同角三角函数的基本关系、二倍角的正切公式的应用,属于中档题. 三、解答题17.(10分)数列{an}满足a1=1,a2=2,an+2=2an+1a﹣n+2.(Ⅰ)设bn=an+1a﹣n,证明{bn}是等差数列;(Ⅱ)求{an}的通项公式.【考点】83:等差数列的性质;84:等差数列的通项公式;8H:数列递推式.菁优网版权所有【专题】54:等差数列与等比数列.【分析】(Ⅰ)将an+2=2an+1a﹣n+2变形为:an+2a﹣n+1=an+1a﹣n+2,再由条件得bn+1=bn+2,根据条件求出b1,由等差数列的定义证明{bn}是等差数列;(Ⅱ)由(Ⅰ)和等差数列的通项公式求出bn,代入bn=an+1a﹣n并令n从1开始取值,依次得(n1﹣)个式子,然后相加,利用等差数列的前n项和公式求出{an}的通项公式an.【解答】解:(Ⅰ)由an+2=2an+1a﹣n+2得,an+2a﹣n+1=an+1a﹣n+2,由bn=an+1a﹣n得,bn+1=bn+2,即bn+1b﹣n=2,又b1=a2a﹣1=1,所以{bn}是首项为1,公差为2的等差数列.(Ⅱ)由(Ⅰ)得,bn=1+2(n1﹣)=2n1﹣,由bn=an+1a﹣n得,an+1a﹣n=2n1﹣,则a2a﹣1=1,a3a﹣2=3,a4a﹣3=5,…,ana﹣n1﹣=2(n1﹣)﹣1,所以,ana﹣1=1+3+5+…+2(n1﹣)﹣1==(n1﹣)2,又a1=1,所以{an}的通项公式an=(n1﹣)2+1=n22n﹣+2.【点评】本题考查了等差数列的定义、通项公式、前n项和公式,及累加法求数列的通项公式和转化思想,属于中档题. 18.(12分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.【考点】GL:三角函数中的恒等变换应用;HP:正弦定理.菁优网版权所有【专题】58:解三角形.【分析】由3acosC=2ccosA,利用正弦定理可得3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得tanC,利用tanB=tan[π﹣(A+C)]=﹣tan(A+C)即可得出.【解答】解:∵3acosC=2ccosA,由正弦定理可得3sinAcosC=2sinCcosA,∴3tanA=2tanC,∵tanA=,∴2tanC=3×=1,解得tanC=.∴tanB=tan[π﹣(A+C)]=tan﹣(A+C)=﹣=﹣=1﹣,∵B∈(0,π),∴B=【点评】本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题. 19.(12分)如图,三棱柱ABCA﹣1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1ABC﹣﹣的大小.【考点】LW:直线与平面垂直;MJ:二面角的平面角及求法.菁优网版权所有【专题】5F:空间位置关系与距离.【分析】(Ⅰ)由已知数据结合线面垂直的判定和性质可得;(Ⅱ)作辅助线可证∠A1FD为二面角A1ABC﹣﹣的平面角,解三角形由反三角函数可得.【解答】解:(Ⅰ)∵A1D⊥平面ABC,A1D⊂平面AA1C1C,∴平面AA1C1C⊥平面ABC,又BC⊥AC∴BC⊥平面AA1C1C,连结A1C,由侧面AA1C1C为菱形可得AC1⊥A1C,又AC1⊥BC,A1C∩BC=C,∴AC1⊥平面A1BC,AB1⊂平面A1BC,∴AC1⊥A1B;(Ⅱ)∵BC⊥平面AA1C1C,BC⊂平面BCC1B1,∴平面AA1C1C⊥平面BCC1B1,作A1E⊥CC1,E为垂足,可得A1E⊥平面BCC1B1,又直线AA1∥平面BCC1B1,∴A1E为直线AA1与平面BCC1B1的距离,即A1E=,∵A1C为∠ACC1的平分线,∴A1D=A1E=,作DF⊥AB,F为垂足,连结A1F,又可得AB⊥A1D,A1F∩A1D=A1,∴AB⊥平面A1DF,∵A1F⊂平面A1DF∴A1F⊥AB,∴∠A1FD为二面角A1ABC﹣﹣的平面角,由AD==1可知D为AC中点,∴DF==,∴tan∠A1FD==,∴二面角A1ABC﹣﹣的大小为arctan【点评】本题考查二面角的求解,作出并证明二面角的平面角是解决问题的关键属中档题. 20.(12分)设每个工作日甲,乙,丙,丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)实验室计划购买k台设备供甲,乙,丙,丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.菁优网版权所有【专题】5I:概率与统计.【分析】(Ⅰ)把4个人都需使用设备的概率、4个人中有3个人使用设备的概率相加,即得所求.(Ⅱ)由(Ⅰ)可得若k=2,不满足条件.若k=3,求得“同一工作日需使用设备的人数大于3”的概率为0.06<0.1,满足条件,从而得出结论.【解答】解:(Ⅰ)由题意可得“同一工作日至少3人需使用设备”的概率为0.6×0.5×0.5×0.4+(10.6﹣)×0.5×0.5×0.4+0.6×(1﹣0.5)×0.5×0.4+0.6×0.5×(10.5﹣)×0.4+0.6×0.5×0.5×(1﹣0.4)=0.31.(Ⅱ)由(Ⅰ)可得若k=2,则“同一工作日需使用设备的人数大于2”的概率为0.31>0.1,不满足条件.若k=3,则“同一工作日需使用设备的人数大于3”的概率为0.6×0.5×0.5×0.4=0.06<0.1,满足条件.故k的最小值为3.【点评】本题主要考查相互独立事件的概率乘法公式,体现了分类讨论的数学思想,属于中档题. 21.(12分)函数f(x)=ax3+3x2+3x(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)在区间(1,2)是增函数,求a的取值范围.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.菁优网版权所有【专题】53:导数的综合应用.【分析】(Ⅰ)求出函数的导数,通过导数为0,利用二次函数的根,通过a的范围讨论f(x)的单调性;(Ⅱ)当a>0,x>0时,f(x)在区间(1,2)是增函数,当a<0时,f(x)在区间(1,2)是增函数,推出f′(1)≥0且f′(2)≥0,即可求a的取值范围.【解答】解:(Ⅰ)函数f(x)=ax3+3x2+3x,∴f′(x)=3ax2+6x+3,令f′(x)=0,即3ax2+6x+3=0,则△=36(1a﹣),①若a≥1时,则△≤0,f′(x)≥0,∴f(x)在R上是增函数;②因为a≠0,∴a≤1且a≠0时,△>0,f′(x)=0方程有两个根,x1=,x2=,当0<a<1时,则当x∈(﹣∞,x2)或(x1,+∞)时,f′(x)>0,故函数在(﹣∞,x2)或(x1,+∞)是增函数;在(x2,x1)是减函数;当a<0时,则当x∈(﹣∞,x1)或(x2,+∞),f′(x)<0,故函数在(﹣∞,x1)或(x2,+∞)是减函数;在(x1,x2)是增函数;(Ⅱ)当a>0,x>0时,f′(x)=3ax2+6x+3>0故a>0时,f(x)在区间(1,2)是增函数,当a<0时,f(x)在区间(1,2)是增函数,当且仅当:f′(1)≥0且f′(2)≥0,解得﹣,a的取值范围[)∪(0,+∞).【点评】本题考查函数的导数的应用,判断函数的单调性以及已知单调性求解函数中的变量的范围,考查分类讨论思想的应用. 22.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.【考点】KH:直线与圆锥曲线的综合.菁优网版权所有【专题】5E:圆锥曲线中的最值与范围问题.【分析】(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C的方程,求得x0=,根据|QF|=|PQ|求得p的值,可得C的方程.(Ⅱ)设l的方程为x=my+1(m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|.把直线l′的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|.由于MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,由此求得m的值,可得直线l的方程.【解答】解:(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C:y2=2px(p>0),可得x0=,∵点P(0,4),∴|PQ|=.又|QF|=x0+=+,|QF|=|PQ|,∴+=×,求得p=2,或p=2﹣(舍去).故C的方程为y2=4x.(Ⅱ)由题意可得,直线l和坐标轴不垂直,y2=4x的焦点F(1,0),设l的方程为x=my+1(m≠0),代入抛物线方程可得y24my4=0﹣﹣,显然判别式△=16m2+16>0,y1+y2=4m,y1•y2=4﹣.∴AB的中点坐标为D(2m2+1,2m),弦长|AB|=|y1y﹣2|==4(m2+1).又直线l′的斜率为﹣m,∴直线l′的方程为x=﹣y+2m2+3.过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,把线l′的方程代入抛物线方程可得y2+y4﹣(2m2+3)=0,∴y3+y4=,y3•y4=4﹣(2m2+3).故线段MN的中点E的坐标为(+2m2+3,),∴|MN|=|y3y﹣4|=,∵MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,∴+DE2=MN2,∴4(m2+1)2++=×,化简可得m21=0﹣,∴m=±1,∴直线l的方程为xy1=0﹣﹣,或x+y1=0﹣.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题. 
返回首页
X