试读已结束,还剩16页未读,您可下载完整版后进行离线阅读
《2019年高考理科数学试题试卷(天津卷)+参考答案》是由用户上传到老师板报网,本为文库资料,大小为1.44 MB,总共有26页,格式为doc。授权方式为VIP用户下载,成为老师板报网VIP用户马上下载此课件。文件完整,下载后可编辑修改。
- 文库资料
- 26页
- 1.44 MB
- VIP模板
- doc
- 数字产品不支持退货
2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。第Ⅰ卷1至2页,第Ⅱ卷3至5页。答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。考试结束后,将本试卷和答题卡一并交回。祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。2.本卷共8小题,每小题5分,共40分。参考公式:·如果事件、互斥,那么.·如果事件、相互独立,那么.·圆柱的体积公式,其中表示圆柱的底面面积,表示圆柱的高.·棱锥的体积公式,其中表示棱锥的底面面积,表示棱锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,则A.B.C.D.2.设变量满足约束条件则目标函数的最大值为A.2B.3C.5D.63.设,则“”是“”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.阅读下边的程序框图,运行相应的程序,输出的值为A.5B.8C.24D.295.已知抛物线的焦点为,准线为,若与双曲线的两条渐近线分别交于点和点,且(为原点),则双曲线的离心率为A.B.C.D.6.已知,,,则的大小关系为A.B.C.D.7.已知函数是奇函数,将的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为.若的最小正周期为,且,则A.B.C.D.8.已知,设函数若关于的不等式在上恒成立,则的取值范围为A.B.C.D.2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。2.本卷共12小题,共110分。二.填空题:本大题共6小题,每小题5分,共30分.9.是虚数单位,则的值为_____________.10.的展开式中的常数项为_____________.11.已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.12.设,直线和圆(为参数)相切,则的值为_____________.13.设,则的最小值为_____________.14.在四边形中,,点在线段的延长线上,且,则_____________.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)在中,内角所对的边分别为.已知,.(Ⅰ)求的值;(Ⅱ)求的值.16.(本小题满分13分)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;(Ⅱ)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.17.(本小题满分13分)如图,平面,,.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值;(Ⅲ)若二面角的余弦值为,求线段的长.18.(本小题满分13分)设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点在轴的负半轴上.若(为原点),且,求直线的斜率.19.(本小题满分14分)设是等差数列,是等比数列.已知.(Ⅰ)求和的通项公式;(Ⅱ)设数列满足其中.(i)求数列的通项公式;(ii)求.20.(本小题满分14分)设函数为的导函数.(Ⅰ)求的单调区间;(Ⅱ)当时,证明;(Ⅲ)设为函数在区间内的零点,其中,证明.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【解析】【分析】先求,再求。【详解】因为,所以.故选D。【点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.2.设【答案】C【解析】【分析】画出可行域,用截距模型求最值。【详解】已知不等式组表示的平面区域如图中的阴影部分。目标函数的几何意义是直线在轴上的截距,故目标函数在点处取得最大值。由,得,所以。故选C。【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域,分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值或范围.即:一画,二移,三求.3.【答案】B【解析】【分析】分别求出两不等式的解集,根据两解集的包含关系确定.【详解】,即,等价于,故推不出;由能推出。故“”是“”的必要不充分条件。故选B。【点睛】充要条件的三种判断方法:(1)定义法:根据p⇒q,q⇒p进行判断;(2)集合法:根据由p,q成立的对象构成的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题.4.【答案】B【解析】【分析】根据程序框图,逐步写出运算结果。【详解】详解:,结束循环,故输出。故选B。【点睛】解决此类型问题时要注意:①要明确是当型循环结构,还是直到型循环结构,根据各自的特点执行循环体;②要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;③要明确循环体终止的条件是什么,会判断什么时候终止循环体.5.【答案】D【解析】【分析】只需把用表示出来,即可根据双曲线离心率的定义求得离心率。【详解】的方程为,双曲线的渐近线方程为,故得,所以,,,所以。故选D。【点睛】双曲线的离心率。6【答案】A【解析】【分析】利用利用等中间值区分各个数值的大小。【详解】,,,故,所以。故选A。【点睛】利用指数函数、对数函数的单调性时要根据底数与的大小区别对待。7.【答案】A【解析】【分析】只需根据函数性质逐步得出值即可。【详解】为奇函数,可知,由可得;把其图象上各点的横坐标伸长到原来的倍,得,由的最小正周期为可得,由,可得,所以,。故选C。【点睛】在处有定义的奇函数必有。8.【答案】C【解析】【分析】先判断时,在上恒成立;若在上恒成立,转化为在上恒成立。【详解】首先,即,当时,,当时,,故当时,在上恒成立;若在上恒成立,即在上恒成立,令,则,易知为函数在唯一的极小值点、也是最小值点,故,所以。综上可知,的取值范围是。故选C。【点睛】在上恒成立,等价于;在上恒成立,等价于。第Ⅱ卷二.填空题:本大题共6小题.9.是虚数单位,则的值为________.【答案】【解析】【分析】先化简复数,再利用复数模的定义求所给复数的模。【详解】解法一:。解法二:。【点睛】所以解答与复数概念或运算有关的问题时,需把所给复数化为代数形式,即a+bi(a,b∈R)的形式,再根据题意求解.10.是展开式中的常数项为________.【答案】【解析】【分析】根据二项展开式的通项公式得出通项,根据方程思想得出的值,再求出其常数项。【详解】,由,得,故所求的常数项为.【点睛】二项式中含有负号时,要把负号与其后面的字母看作一个整体,计算中要特别注意符号。11.已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_______.【答案】【解析】【分析】根据棱锥的结构特点,确定所求的圆柱的高和底面半径。【详解】四棱锥的高为,故圆柱的高为,圆柱的底面半径为,故其体积为。【点睛】圆柱的底面半径是棱锥底面对角线长度的一半、不是底边棱长的一半。12.设,直线和圆(为参数)相切,则的值为____.【答案】【解析】【分析】根据圆的参数方程确定圆的半径和圆心坐标,再根据直线与圆相切的条件得出满足的方程,解之解得。【详解】圆心坐标为,圆的半径为,所以,即,解得。【点睛】直线与圆的位置关系可以使用判别式法,但一般是根据圆心到直线的距离与圆的半径的大小作出判断。13.设,则的最小值为______.【答案】【解析】【分析】把分子展开化为,再利用基本不等式求最值。【详解】,等号当且仅当,即时成立。故所求的最小值为。【点睛】使用基本不等式求最值时一定要验证等号是否能够成立。14.在四边形中,,点在线段的延长线上,且,则_________.【答案】【解析】【分析】可利用向量的线性运算,也可以建立坐标系利用向量的坐标运算求解。【详解】解法一:如图,过点作的平行线交于,因为,故四边形为菱形。因为,,所以,即.因为,所以.解法二:建立如图所示的直角坐标系,则,。因为∥,,所以,因为,所以,所以直线的斜率为,其方程为,直线的斜率为,其方程为。由得,,所以。所以。【点睛】平面向量问题有两大类解法:基向量法和坐标法,在便于建立坐标系的问题中使用坐标方法更为方便。三.解答题.解答应写出文字说明,证明过程或演算步骤.15.在中,内角所对的边分别为.已知,.(Ⅰ)求的值;(Ⅱ)求的值.【答案】(Ⅰ)(Ⅱ)【解析】【分析】(Ⅰ)由题意结合正弦定理得到的比例关系,然后利用余弦定理可得的值(Ⅱ)利用二倍角公式首先求得的值,然后利用两角和的正弦公式可得的值.【详解】(Ⅰ)解:在中,由正弦定理,得,又由,得,即.又因为,得到,.由余弦定理可得.(Ⅱ)解:由(Ⅰ)可得,从而,,故【点睛】本题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查计算求解能力.16.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;(Ⅱ)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.【答案】(Ⅰ)见解析;(Ⅱ)【解析】【分析】(Ⅰ)由题意可知分布列为二项分布,结合二项分布的公式求得概率可得分布列,然后利用二项分布的期望公式求解数学期望即可;(Ⅱ)由题意结合独立事件概率公式计算可得满足题意的概率值.【详解】(Ⅰ)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为,故,从面.所以,随机变量的分布列为:0123随机变量的数学期望.(Ⅱ)设乙同学上学期间的三天中7:30之前到校的天数为,则.且.由题意知事件与互斥,且事件与,事件与均相互独立,从而由(Ⅰ)知:.【点睛】本题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.17.如图,平面,,.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值;(Ⅲ)若二面角的余弦值为,求线段的长.【答案】(Ⅰ)见证明;(Ⅱ)(Ⅲ)【解析】【分析】首先利用几何体的特征建立空间直角坐标系(Ⅰ)利用直线BF的方向向量和平面ADE的法向量的关系即可证明线面平行;(Ⅱ)分别求得直线CE的方向向量和平面BDE的法向量,然后求解线面角的正弦值即可;(Ⅲ)首先确定两个半平面的法向量,然后利用二面角的余弦值计算公式得到关于CF长度的方程,解方程可得CF的长度.【详解】依题意,可以建立以A为原点,分别以的方向为x轴,y轴,z轴正方向的空间直角坐标系(如图),可得.设,则.(Ⅰ)依题意,是平面ADE的法向量,又,可得,又因为直线平面,所以平面.(Ⅱ)依题意,,设为平面BDE的法向量,则,即,不妨令z=1,可得,因此有.所以,直线与平面所成角的正弦值为.(Ⅲ)设为平面BDF的法向量,则,即.不妨令y=1,可得.由题意,有,解得.经检验,符合题意。所以,线段的长为.【点睛】本题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.18.设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点在轴的负半轴上.若(为原点),且,求直线的斜率.【答案】(Ⅰ)(Ⅱ)或.【解析】【分析】(Ⅰ)由题意得到关于a,b,c的方程,解方程可得椭圆方程;(Ⅱ)联立直线方程与椭圆方程确定点P的值,从而可得OP的斜率,然后利用斜率公式可得MN的斜率表达式,最后利用直线垂直的充分必要条件得到关于斜率的方程,解方程可得直线的斜率.【详解】(Ⅰ)设椭圆的半焦距为,依题意,,又,可得,b=2,c=1.所以,椭圆方程为.(Ⅱ)由题意,设.设直线的斜率为,又,则直线的方程为,与椭圆方程联立,整理得,可得,代入得,进而直线的斜率,在中,令,得.由题意得,所以直线的斜率为.由,得,化简得,从而.所以,直线的斜率为或.【点睛】本题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.19.设是等差数列,是等比数列.已知.(Ⅰ)求和的通项公式;(Ⅱ)设数列满足其中.(i)求数列的通项公式;(ii)求.【答案】(Ⅰ);(Ⅱ)(i)(ii)【解析】【分析】(Ⅰ)由题意首先求得公比和公差,然后确定数列的通项公式即可;(Ⅱ)结合(Ⅰ)中的结论可得数列的通项公式,结合所得的通项公式对所求的数列通项公式进行等价变形,结合等比数列前n项和公式可得的值.【详解】(Ⅰ)设等差数列的公差为,等比数列的公比为.依题意得,解得,故,.所以,的通项公式为,的通项公式为.(Ⅱ)(i).所以,数列的通项公式为.(ii).【点睛】本题主要考查等差数列、等比数列的通项公式及其前n项和公式等基础知识.考查化归与转化思想和数列求和的基本方法以及运算求解能力.20.设函数为的导函数.(Ⅰ)求的单调区间;(Ⅱ)当时,证明;(Ⅲ)设为函数在区间内的零点,其中,证明.【答案】(Ⅰ)单调递增区间为的单调递减区间为.(Ⅱ)见证明;(Ⅲ)见证明【解析】【分析】(Ⅰ)由题意求得导函数的解析式,然后由导函数的符号即可确定函数的单调区间;(Ⅱ)构造函数,结合(Ⅰ)的结果和导函数的符号求解函数的最小值即可证得题中的结论;(Ⅲ)令,结合(Ⅰ),(Ⅱ)的结论、函数的单调性和零点的性质放缩不等式即可证得题中的结果.【详解】(Ⅰ)由已知,有.当时,有,得,则单调递减;当时,有,得,则单调递增.所以,的单调递增区间为,的单调递减区间为.(Ⅱ)记.依题意及(Ⅰ)有:,从而.当时,,故.因此,在区间上单调递减,进而.所以,当时,.(Ⅲ)依题意,,即.记,则.且.由及(Ⅰ)得.由(Ⅱ)知,当时,,所以在上为减函数,因此.又由(Ⅱ)知,故:.所以.【点睛】本题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想和化归与转化思想.考查抽象概括能力、综合分析问题和解决问题的能力.